August 1	Method 5/202, I	Dryer EP-6
1, 1994	Method 25A	(gas fired)

=			**								
			10:39am	End				8:25am	Start	Run #1 Time	
Оī	4	ω	N		Ŋ	4	ω	N	1	Field	
98	97	100	99	98	100	100	100	100	99	Field Voltage (% of Maximum)	
980	1000	1000	980	980	1000	1000	1000	980	980	Precip Current (DC ma)	
										Rate: 83.8 TPH	

)			1:30pm	End				11:20am	Start	Run #2 Time
	(J)	4	ω	N		ΟΊ	4	ω	20		Field
C	99	99	100	100		100	99	100	100	99	Field Voltage (% of Maximum)
	1000	1000	1000	980	980	1000	1000	1000	1000	980	Precip Current (DC ma)
											Rate: 86.5 TPH

Dryer EF-6 (gas πred) Method 5/202, Method 25A August 11, 1994

Run #3	Field	Field Voltage	Precip Current	Rate:
Start	_	100	980	
2:01pm	10	100	1000	
	3	100	1000	
	4	100	1000	
	ΟΊ	100	1000	
End	<u> </u>	100	980	
4:13pm	N	100	980	
	ω	100	1000	
	4	100	1000	
**	Ø	98	1000	

Dryer EP-6 (gas fired) Method 5/202, Method 25A August 11, 1994

			œ.	Contract of the Contract of th
	1000	99	ΟΊ	
	1000	102	4	
	1000	100	ω	
	980	99	N	6:53pm
	980	100	-	End
	1000	100	ហ	
	1000	98	4	
	1000	100	ω	
	1000	100	N	4:41pm
	980	100	_	Start
Rate: 85.7 TPH	Precip Current (DC ma)	Field Voltage (% of Maximum)	Field	Run #4 Time

Method 5/202, Method 25A, Method 0010 Calciner EP-5 (gas fired) August 2, 3, 4, 1994

1

1500				Fire	11:10pm	End				**	8:40pm	Start	Run #1 Time	
c	n	OI	4	ω	2	<u> </u>	O)	(J)	4	အ	N		Field	
0	103	98	90	100	98	100	102	101	100	100	100	90	Field Voltage (% of Maximum)	
	1750	1700	1700	1700	1700	1700	1750	1700	1700	1750	1750	1850	Precip Current (DC ma)	
													August 2, 1994	

Calciner EP-5 (gas fired) Method 5/202, Method 25A, Method 0010

	o Carlo	_]	
	1700	96	יעו	တ	1999
	1700	100		ΟΊ	
	1700	92		4	
	1750	100		ω	
	1700	100		N	2:26pm
	1700	102		<u> </u>	End
	1750	95		თ	
	1700	100		ĆΊ	
	1700	94		4	
	1750	99		ω	
	1700	100		N	12:07pm
	1500	80		<u> </u>	Start
August 2, 1994	Precip Current (DC ma)	Field Voltage (% of Maximum)	Fie	Field	Run #2 Time
	, 4, 1994	August 2, 3,			

Method 5/202, Method 25A, Method 0010 Calciner EP-5 (gas fired) August 2, 3, 4, 1994

		,•	•	5:45pm	End					3:15pm	Start	Run #3 Time
O	σı	4	ω	N	<u> </u>	O	СЛ	4	ယ	N	1	Field
100	98	100	100	97	97	101	102	102	100	98	98	Field Voltage (% of Maximum)
1750	1700	1700	1750	1700	1700	1700	1700	1700	1750	1700	1700	Precip Current (DC ma)
<u> </u>												August 2, 1994

SOLVAY2016_1¹.4_001683

Method 5/202, Method 25A, Method 0010 August 2. 3. 4. 1994 Calciner EP-5 (gas fired)

Run #4 Time Start 7:15pm	Field 7	Field Voltage Pro (% of Maximum) 102 98	Precip Current (DC ma) 1750	1
7:15pm	ωΝ	98		1700 1750
	4	101		1700
	ΟΊ	100		1700
	O	95		1750
End	<u>.</u>	72		1250
9:32pm	2	100		1700
	ω	100		1700
	4	100		1700
	ОI	94		1700
	O	99)	1700

Current Date : 02-07-1997 Current Time : 08:15:22

Daily Parameter Report - Auxiliary Averages
Solvay Minerals, Inc.
Dryer
Stack
Friday
F

Status: Flags:		02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	02/06/97	Date		
'<' - Less than 'B' - Bad Status 'U' - Analog Und 'L' - Low-Low Al 'V' - DIS #1 Obs	Max Min Mean Records	23:00	22:00	21:00	20:00	19:00	18:00	17:00	16:00	15:00	14:00	13:00	12:00	11:00	10:00	09:00	00:80	07:00	06:00	05:00	04:00	03:00	02:00	01:00	00:00	M900	Time	Logger
Less than ##% Data, Bad Status, Analog Underrange, Low-Low Alarm, DIS #1 Obs,	3.4 .6 1.6 234	1.3	نــر • نــر	بر ب	1.1	1.3	1.3	1.1	.9	<u>1</u> . ω	ω ω	1.4	1.7	1.8	1.8	2.1	1.3	2.0	2.3	2.2	2.1		1.9	1.5	. &	00		r Name : SOLVAY2 r Id : 02
'P' - Power 'C' - Calib '+' - Maxim 'h' - High / 'W' - DIS #/		1.2	1.0	1.0	1.0	1.2	1.3	1.0	1.0	μ. ω	1.2	1.4	1.6	1.9	1.8	1.5	2.2	2.0	1.9	2.2	2.3	1.4	2.0	1.6	• ∞	06		172
Power Fail, Calibration, Maximum, High Alarm, DIS #2 Obs,		1.1	1.0	1.0	نـــر • نـــر	1.2	1.4	1.0	1.0	1.2	1.2	1.5	1.6	1.8	1.8	1.3	2.5	1.9	1.8	2.4	2.1	1.6	2.0	1.5	. 9	12		Bo St
'D' - Disabled, 'M' - Maintenance, '-' - Minimum, '1' - Low Alarm, 'X' - DIS #3 Obs,		. 9	1.0	. 0	ω	μ° ω	1.4	1.1	1.0	, , , , , , , , , , , , , , , , , , ,		1.5	1.5	1.7	1,8	.	ω 1	2.0	1.9	2.4	2.6	1.9	2.0	1.4	1.0	18		Stack : DR Boiler/Unit : SMI
K d b o H		1.0	. 9	. 9	<u>.</u> ω	1.2	<u>.</u> ω	1.2	1.0	.9		1.4	1.5	1.8	1.7	2.2	3.2	2.1	2.2	2.5		2.1	2.2	1.1	1.0	24	Minute	SWOO!
- Out-of-Control, - Analog Over, - Rate of Change, - High Rate of Ch		<u>سر</u> سر	• •	ا و	4	μ	μ	1.2	₽ ₽	• œ	1.0	1.4	1.6	1.9	1.8	2.6	ω ω	2.1	2.8	2.5	2.4	1.9	1.7	1.0	1.0	30		Parameter Units
ntrol, er, nange, of Change,		p→ 1			1.4			1.2	Ω		1.1				•	o (JI				2.5			•	• 9	Ω	36		eter : OP_SMO6 : PERCENT
'F' - Boil 'A' - Arit 'H' - High 'j' - Low 'Z' - DIS			1.2			1.0		4		თ	1.2	5	1.7	2.0	1.8	2.1	Ω	2.1	2.7	2.1	2.5	1.6	1.2	. 9	Ω	42		SM06
Boiler Off-Line, Arithmetic Error, High-High Alrm, Low Rate of Change, DIS #5 Obs.			٠ 1 ند	٠ د د	٦ <u>.</u> ٧ ٥	1.0	; ;	1.2	1.1	• o	1.2	μ' σ	1.7	2.1	1 : 8	2.1	ω .	1.7	N :	2.1	2 5	1.6	ب د د	ا دــــــــــــــــــــــــــــــــــــ	1.2	48		
ge,		1.1	٠ ١	- L	٠ ١	- L	٦ ; د	ا د		00	<u>μ</u> ,	5	1.4	2.1	, i	□ !	N I	w	2 5	2.4	2.4	2.1	ப ர	<u>н</u> (1.3	54		

7.50	Logger Name : SOLVAY1 Logger Id : 01
	Daily Parameter Report - Auxiliary Averages Solvay Minerals, Inc. Calciner Stack Boiler/Unit:(SM05 CA-3) U
	Verages Parameter: OP SMO5 Units: PERCENT

Flags:							16/90/76	10	<i>y</i> :	J)	02/06/97	02/06/97	0	١٥	λ (O,	02/06/97	O	0	4 0	ו ת	S)	Ø,	02/06/97	02/06/97	Ø	σ		10	١ ('n.	6/9	02/06/97	02/06/97	í	Da te		
'<' - Less t 'B' - Bad St 'U' - Analog 'L' - Low-Low 'V' - DIS #1	Records		5	M. M.	Max		23:00	000	22.00	21:00	20:00	19:00	00 BT	T	17.00	16:00	15:00	14:00	TO:00	13-00	12.00	11:00	10:00	09:00	00:80	07:00	06:00	05:00	04:00	04.00	000	02:00	01:00	00:00	0	Time		Logger
Less than ##% Data, Bad Status, Analog Underrange, Low-Low Alarm, DIS #1 Obs,	234	4	- (°	ا ند	7.4		ω. 80		ى ر د	w :	ω. 9	ω. •	ω. 80	ن د د	ນ ເ ວ ດ	ω (α	ა •	3.7	ري ه) · ~	J (ν . ν .	ָ ת	4.0	မှ	6.1	4.00	4.5	ن. د		7 (J (4.2	3.9	c	9		r Name : SOLVAY1
##							3.7	ن. «) · ·	J (מ	ω 	3,7	د. 80) ·	J (ω 20	ω Φ	ω &	3.7	0	ט נ א נ	o (ים	4.0	6.2	4.9	4.9	5.0	4.9	. C	1 C	A 1	3,9	0	9		'AY1
Power Fail, Calibration, Maximum, High Alarm, DIS #2 Obs,							3.7	3.7	4.	, ,	υ (ω w	ω ∞	3.7	3.7	1 0	ω (α (w oo	ა ტ	ω. 6	3.7	, ,) () ~	J -	7	ဟ ထ	4.4	.00	5.4	4.7	4.4	. U) () (ט ס	12			β S (
'D' - Disabled, 'M' - Maintenance '-' - Minimum, 'I' - Low Alarm, 'X' - DIS #3 Obs,							3.7	ω &	3.7		> (> i	ω ; Ο	ယ ထ	ယ စ	ω. 80) · Y	υ (. Ο (יט	ω 	ယ စ	ω. 6	J. 4		ა ₁	A	ЭТ I	4.7	4.9	57 .A.	4.4	4.0	, (L) (w D	18	<u>;</u>		Stack :/ Boiler/Unit :/
abled, 'T' ntenance, 'O' imum, 'R' Alarm, 'J' #3 Obs, 'Y'							ب 1	3.7	3.6	U. V) (٥ (ω ∞	3.7	ယ စ	ر د د	ى ر د	٦ ·	3.7	3.7	ω. 6	CC.	. c) (» (ه د	л . Э (л .	4.7	.00	4.4	4. _1	3.7	0. 7	J J	24	Minute		TPS
- Out-of-Co - Analog Ov - Rate of C - High Rate - DIS #4 Ob						0	J 1	3.7	ω. 6	4.0		ى ر ە د	ມ (ໝໍ	ω ∞	Ω	۵. 8) (υ (ο -		ယ္	3.7	3.4	£ 9) (, t	۰ د د د	n .	4 0	ָרָר. בי	4.0	7.1	4.2	C	ì	30	'n,) 011112	_
ntrol, er, hange, of Change,									•		a		υ (c	×	Ω	•				ب ص				C	·								Ω		36		••	eter:
27 27 27 27 27 27 27 27 27 27 27 27 27 2						ن. «		J (S S	ω •9	3.7	٥. /) (] ~	ນ (7 -	3.7	ထ	د. 80	0.0) ·	ນ (7 (S)	3. 4	ა თ	ω @	α	, th	f.	→ 0	7 C	A 0 0	N N	4 - -	ω •		42		CENT	OP_SM05
Boiler Off-Line, Arithmetic Error, High-High Alrm, Low Rate of Chang DIS #5 Obs.						3.7	0.0	υ (ο -	٠, ١	ω .0	ა. &	3. /) () () (ω ; ∞	ယ	ω &	3. /) (۵ ر د د	א ה	ω	3°9	ယ &	3.9	. 00	. 00	• •) (n (ית	4 1	ω 		48			
Line, Error, Lrm, Change,						ω &	۷. /) () -	J (w x	ω &	3.7	3.6) () ~	۵ ر. - ۲	3.7	ა. 8	3.7	0.0) (N (ית	ω σ	3.7	3.7	5.4	4.6	 	. 0	J ~	ו ני ני ע	4.2	ω 5		54			